Lawrence Livermore National Laboratory

Data Management of Metadata-Rich File Systems

Sasha Ames

Maya Gokhale (LLNL), Carlos Maltzahn (UCSC)

LLNL-PRES-418053

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Introduction

- 58% annual increase of data creation rate, 5-fold increase in 4 years. 487 exabytes created in 2008 [Gantz08,09]
- Hierarchical file systems [Daley65] originated in 1965 for 1000s of files.
 - Now 6 or more orders of magnitude more files per file system
 - Names and hierarchical directories as the only userdefined metadata concepts not adequate anymore
- Need scalable data model for organizing files
- Need scalable naming interface for accessing files
- Example: find files of "news documents" that refer to the "location" "New York"

Ontion: Additional Information

Traditional Architecture

- Relational databases store metadata
- File systems store data
- Application must "bridge" two systems
- Advantages:
 - High throughput for file I/O
 - Mature technology for metadata management and retrieval

Problems:

- Disparate name spaces
- Brittle schema
- Brittle consistency
- Individual file stat/open/ close

Metadata-rich File Systems

- Integrates database functionality into file system for the purpose of metadata management
- Benefits:
 - General schema
 - Unified namespace
 - Robust consistency
 - Query based file access interfaces

- Our approach:
 - Graph-based data model for file metadata
 - Path-based language interface for query added to POSIX file system interface
 - Query results appear in directory listings (Semantic File Systems)

Data Model

- Unlike POSIX, no file/directory distinctions
- Files connected with directed "edge-links"
- Name=value paired attributes attached to files and links.
- File and links assigned IDs
- File "names" become one of many attributes
- Links identified through file endpoints and/or attributes
- POSIX directories are zero-byte files linking to children (for semantics compliance)

Use of zero-byte files helpful in attaching to files metadata that is more complex than a single attribute

Example graph data

Query: find files of "news documents" that refer to the "location" "New York"

Quasar expression:

- @FileType=NewsDocument
- @child:SemanticType=Location;
 - SemanticValue=New York;
- ^Extractor=Stanford

QFS Physical Data Model

- Table entries refer to file attribute sets and lists of ID pairs, each containing parent/child file ID (inode #) and link ID
- Link ID refers to links table entries
- File IDs refer back to file table entries
- Global file/link indices contains attribute vocabulary trees
- Each index tree node refers to a posting list of file/link IDs

Experimental Methodology

- Workload Studies
 - Use Livermore Entity Extractor for data + metadata, Reuters news corpus
 - Extractor reconfigured for QFS
 - Compare QFS prototype with FS + DB (PostgreSQL)
 - DB configured with schema specific to Lextrac and indexing on all columns
 - Ingest experiments: Look at increasing document counts, 8/16GB, HD/ SSD.
 - Query experiments: 5 classes of queries.
 - Choose query "terms" from Lextrac entity distributions.
 - Equivalent queries run in both Quasar and SQL
- POSIX FS operation studies: microbenchmarks to measure overhead of QFS metadata management
 - Create a directory tree (mkdir)
 - "Find" (stat/opendir/readdir)
 - Move single file (rename)

Ingest Study 1 – QFS scalability

Ingest Study 2 – QFS vs FS+DB

Example Queries

Simple Queries:

- Q0 Find all documents containing the "location" "New York."
- Terms based on ranking entity values by frequency
- Complex Queries: (Document, entity1, entity2, proximity)
 - Q1 Find all documents that contain "New York" and "NYSE" with proximity score of "25".
 - Q2 Find the proximity scores relating "New York" and "NYSE" in documents with names in the range of "N20090101" "N20090331."
 - **Q3** Find entities co-occurring with "New York" in documents with names in the range "N20090101" "N20090331" whose proximity score with "New York" is between "20" and "30".
 - Q4 Same as Q3 but match scores of exactly "25".
 - Entity values, proximity scores and document ranges selected randomly (chance of no results)

Query Study 1 – 20,000 Lextrac Documents

Query Study 2 – 450,000 Lextrac Documents

POSIX Operation Microbenchmarks

Discussion and Future Work

- QFS prototype optimized for ingest
 - Ingest 1.4-1.85x faster than FS+DB
 - File moves slower than ext2 FS
- QFS Metadata store 3.5x larger than Postgres
 - 450K documents Q0, 20% of Q1-Q2 have 1000x slower performance
- Future Work:
 - Scientific data use case: Sloan Digital Sky Survey
 - Metadata analysis: look at index properties and access patterns
 - Optimizations
 - Reduce metadata store size
 - Improve query planner